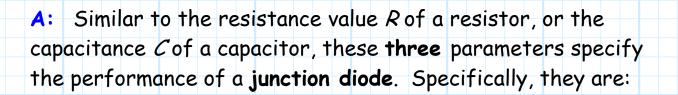
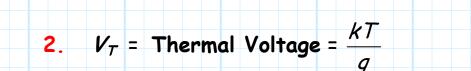
## 1/2


## <u>The Junction</u> <u>Diode Equation</u>

The relationship between the current through a junction diode  $(i_D)$  and the voltage across it  $(v_D)$  is:

$$\dot{I_D} = I_s \left( e^{\frac{v_D}{n_T}} - 1 \right) \text{ for } v_D > -V_{ZK}$$


**Note:** this equation describes diode behavior in the forward **and** reverse biased region **only** (i.e., **not** valid for **breakdown**).

**Q:** Good **golly**! Just what do those **dog-gone** parameters *n*, *I*<sub>s</sub> and *V*<sub>T</sub> mean?



**1.**  $I_s =$  **Saturation** (or scale) **Current**. Depends on diode material, size, and **temperature**.

Typical values range from 10<sup>-8</sup> to 10<sup>-15</sup> A (i.e., tiny)!



## Where:

- k = Boltzman's Constant
- T = Diode Temperature ( $^{\circ}$ K)
- q = Charge on an electron (coulombs)

At 20  $^{\circ}C$  ,  $V_T \approx 25 mV$ 

**IMPORTANT NOTE!:** Unless otherwise stated, we will assume that each and every junction diode is at room temperature (i.e.,  $T = 20^{\circ}$  C). Thus, we will always assume that the thermal voltage  $V_T$  of all junction diodes is 25 mV (i.e.,  $V_T = 25$  mV)!

n = a constant called the ideality factor (i.e. a "fudge factor").

Typically, 
$$1 \le n \le 2$$